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ABSTRACT

A source of 14.1 Mev neutrons is assumed to be uniformly distributed
and isotropically directed in a semi-infinite medium of deuterium at uni-
form density, subject to the known laws of elastic and inelastic scatter-
ing. The distribution, io energy and angle normal to the surface, of
those neutrons escaping the medium with energies above 6 Mev, is deter-
mined by Monte Carlo methods.

The dependence of the escape distribution on the depth of the source
below the surface is also given, so that the results may be applied to a

medium with a depth-dependent bufning rate.

3
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1. The Neutron in Flight

The medium is considered to occupy the lower half of space. The
geometric parameters cheracterizing a neutron in flight are taken to be
the z-coordinate on an axis perpendicular to the surface and the angle 7
from the vertical to the line of flight. The square root v of the neutron
energy measured in units of 100 Mev and the "weight" w comp}ete the list
of neutron parameters.

Source neutrons, haviﬁg w =1 and v2‘= .141, are uniformly distri-
buted in a layer of width A= 24,596 cm parallel to the surface. Escape
distributions are obtained for such a source layer placed at various
depths (0, A, 24, 34, 4A) below the surface.

The source is assumed to be isotropic in direction; thus
cos 7 = 0.5 - r is the Monte Carlo formulal for 7 , r representing here,
and throughout the report, a random number equi-distributed on the inter-
val 0 £ r £ 1,

For the sake of definiteness, the deuterium medium is assumed to
have normal numerical density N0 = 5.08212 x lO22 atoms per cubic centi-
meter. The total cross section Eﬁ}(in barns) is regarded2 as being

defined by the formula E?% = .3004/v. Thus we have

Ler. LA-1583, LA-1592 for general remarks on the Monte Carlo method.

2All cross section data used in this report were supplied by J. L. Gammel.
Cf. (1) R. S. Christian and J. L. Gammel, "Elastic Scattering of Protons
and Neutrons by Deuterons,” Phys. Rev. 91, 100 (1953). (2) Cf. also
R. M. Frank and J. L. Gammel, "Inelastic Scattering of Protons and Neu-
trons by Deuterons,” to appear in Phys. Rev.
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= (-tn r)/lo‘zu N = - 65.502v(€n r) for the distance from the

O
point of departure to the point of collision C, the extent of the medium
permitting. Comparison of the z-coordinate of the point C with that of
the surface distinguishes between escape and collision within the medium.

In the event of escape, the neutron is classified with respect to
its energy group h and the angular zone J in which falls its normal angle
of escape. Its weight w is then tallied in a counter which records the
number of neutrons of type (h,j) escaping.

The polynomial

& = - .08445331 + 2.80169574v° - 8.37914536v"
is considered to define the total inelastic cross section in barns. .
Hence, in the event of collision, comparison of a new random number T

with the ratio x==E%A5; serves to determine the nature of the colli-

sion as inelastic or elastic according as r< x or r >x, respectively.

2. Elastic Collision

An elastic collision suffered by a neutron with energy v2 has the
1 '
property that specification of the angle ¢) of scattering from the line
of flight in the center of mass system uniquely determines the energy

2
v' of the scattered neutron according to the formula

2 1
v /v2 = %(l + s) + %(l - s) cos w

where s = (A - 1)2/(A + 1)2, A= mg/ml, m, = 2.01473, and m = 1.00893.

2

Since we are only interested in neutrons escaping with energies

]
above 6 Mev, we may regard any neutron which scatters at an angle w
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greater than a certain critical angle QV; (that for which the resulting
energy v'2 = ,06) as effectively lost, or, as we shall say, elastically
absorbed. At this point we use a semi-deterministic method. Instead of
selecting ¢f at random from the proper distribution on the full range

and losing the neutron in the event that W'J>¢C , we compute in advance

the probability

1 1

e=| 5e(v2y»')<y*/ "&e(v2,/u:)9u—'

’”E -1

of scattering at an angle (P' ‘=l/l; , tally the weight (1 - e)w in a
counter for the number of neutrons lost to elastic absorption, and assign
to the neutron the new weight w' o= ew, this amount being regarded as
elastically scattered at an angle less than critical.

In the formula for e, jL' denotes cos (//' s E\J/’e(v2 , /4_' ) is the differen-

tial cross section (barns per steradian) for elastic scattering, and

/l; = cos ¢C = 5(-.31221 + .0337326v-2), the latter resulting from the
expression for v' /v2 when v'2 = .06. The function e can be fitted by
the polynomial

2
v

20 L 6 8
e =2 v(-Ao +AV - AV + AV - Av )

3

vhere A = .00003 20690, A, = .00118 61091, A, = .01562 88950,

1

A3 = ,09165 31253, and A, = .20215 48272,

2

The angle of scattering can now be determined by the formula
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r = g' O‘e(v o )9‘-* f' o'e(v M )9}*
where r is random. For this purpose, we use a fit for?§é, on the range

1 1 ' ! 2
g 8421, of the form B (v2 ) = K(vP) [a(v2> + o)+ o(vIN }

where a, b, c are suitable quadratic functions of v2, and K(vg) is im-
material for the present application.
In this way we obtein the equation Av + By? + Cv3 - D = 0 for the

s
determination of = /2, where

A = .00384 60637 + .07959 38700v2 - .36363 60000v“

B = - .00267 OBUBO + .2541k 20300v° - .86687 70000V
C = - 00054 62883 + .16717 L4660v> - .15952 39996v"
D = r(A/2 + B/% + ¢/8) + (1 -r) (Apg + Bzég + th3)
Vo Mol

Inspection of the above cubic in 2/ shows it to be monotone increas-

S

ing and concave upward on the range z% /% .5 for all energies on the

relevant range .06 = v© £ .141. Newton's method is therefore appropriate

for the evaluation of 2/, a convenient initial approximation being

The formulas

vt = v(.55533 + .889352)%/2

1/2

cos Y = 2(.05 + .19969¥) / (.049876 + .0T98TEV)
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are used for the computation of the energy v' of the scattered neutron

and the laboratory angle W of scattering from the original line of
flight.
1
Consideration of Fig. 1 shows that the angular parameter 7 for

the scattered neutron may be obtained from the equation

1
cos’7 = cos(V cos7 - sinl,) sin7 cos/
where /‘ = Tr, and r is random.
5 .
Thus the weight w', energy v' , and angle 7' of the elastically

scattered neutron are determined. Its z-coordinate z' is, of course,

that of the point C of collision.

3. Inelastic Collision

By an inelastic collision is meant a disruption of the deuterium
nucleus by the impinging neutron, the end products being two neutrous
and a proton. It is shown in Section 5 that, for an incident neutron

having an energy E exceeding twice the binding energy b (2.228 Mev) of

the deuteron, the particles resulting from the reaction may come off at I
any laboratory angle ¢’with the originel line of flight. Moreover,

for a particular qU, the possible energies range from zero to an upper

bound E =.E(E,(P), where (EE)I/Q cos w = %'ﬁ - % E + b, or, in our
notation, Vv v cos w = %'72 - % v2 + 00208,

For a fixed initial energy v2, the greatest V occurs at ¢== 0, and
this Vv = ¥(v,0) is a decreasing function of v. It is therefore clear

that inelastic collisions induced by neutrons with energies less than

8 |
o': o.:. : 0:0 .... .o
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sinycos/ﬁ sinsbs in/, cos (,)

Fig. 1 Geometry of scattering.
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that for which 'w'r'z',(v,O) = ,06 must result in the production of neutrons
below 6 Mev. Hence, a neutron entering an inelastic collision with energy
below 8.323 Mev is effectively lost, and we tally its weight w in a
counter reserved for total "inelastic absorption.”

If a neutron with energy v2> .08323 induces an inelastic collision,
we are assured that VQ(V,O) exceeds .06. However, as ll/ increases, V(v,‘l})
decreases until it attains the value (.06)1/2. For a given v, that
angle (/) for which this occurs is called the critical angle lpc = q/c(v).
Neutrons resulting from inelastic collision and travelling at angles
(}I > ql . necessarily have energies below 6 Mev. These remarks are il-
lustrated in Fig. 2.

Setting '\72 = .06 in the maximum energy formula yields
cos (PC = l&v-l (.114595 - .51031v2) for the critical angle corresponding
to the incident energy v2.

For inelastic collision, a differential cross section % (E,E', Iil)
(barns per Mev per steradian) is defined in such a way that
10-214'“'(':(E,E',1P) No ax S(E) is the expected number of neutrons of
energy E' and angle v/', per Mev per steradian, resulting from in-
elastic collisions of a source of S(E) neutrons of energy E in traversing
a medium of numerical density No and thickness ' Ax. Since two neutrons
result per inelastic collision, manifestly, for E>2b

1 CE(EY)
ow T (&', §) a&' d(cos P) = 2 T, (E)

-1 o
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v l/.08323

Fig. 2 The critical angle relations.
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where Aé’i(E) is the ordinary total inelastic cross section.
For E = 14.1, and E = 9.66, graphs were prepared showing the values

of
. E(E,{)
T(e,p) = T(E,E ,Y)aE'
6

plotted against ) = cos lV on the range /‘c cos ‘}’c ‘=/‘€“5—- 1. An

excellent fit for these two curves is provided by the formula

T (2, = 1073 [23.82 + f_ujl9;6g.66 (3.58)} G- ) (1390 -

in case E = 14,1 or 9.66, and the formula is considered todefine the
fﬁnction “E’(E,(#) for 8.323 £ E £ 14,1 on the corresponding range
HM(E) Bz 1,

Using the notation 2/ = % cos }0 y, ¥V = % cos ch, we obtain

(o]

T(E, ) = .05(.1603L + .8063Lv°) (% - v_)/(.6955 - v)?

»n/
It is clear from the definition of T that the number i of neutrons

above 6 Mev produced per inelastic collision is

1
i= 24 T(e,Pra(eos ) /3, (x)
y7

c

~2

Using the T and 6’1 formulas, we obtain

. 2 2 4
i = (A5 + Agv (L + U)/(—A7 + Agv© - A9v )

where A; = .050363, Ag = .25331, A, = .0084453, Ag = .28017, Ay = .83791,

and

12
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_ .1955
L=.2 ,Zn m
U = 2(.25575 - .51151 :/c)

For the energy range within which Wwe opei'ate , 1 is less than unity.
When a neutron of weight w and energy v2 above .08323 collides inelasti-
cally, (1 - i)w is added to the total "inelastic absorption" counter,
and w' = iw is the weight assigned to the inelastically scattered neutron.
Moreover, the appropriate random number formula for assigning the labora-
tory angle ‘f/ of scattering for the neutron of weight iw is

- 1
~ ~
r= 'U(E,lf)d(coslil) 'U(E,({/)d(cos l{’)
Fe Fe

which leads to the equation

where 2/=/u/2 and a = .6955.

Newton's method is applicable here on the same grounds as before,
and is used to evaluate 2/ = % cos 41 The value of cos 7' for the
scattered neutron is now obtained exactly as in the elastic case.

The function T(E,E', lf), considered as a function of E', is rather
flat on the interval 6 £ E' £ E(E,|)), snd we use the simple formula
v = ,06 + r(\'r2 - .06) to determine the energy V'E of the scattered

neutron. Solving the maximal energy equation gives

1/2
;,-:52. {w + [(w)2 + (L5 - .033u2)] }

13
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L, Results
The following taebles show, for various sources, the number S of

neutrons per source neutron escaping the surface, and the distribution

in energy and angle of neutrons escaping. The lower bounds of the four
energy groups h = 1, 2, 3, 4 are taken to be 1%, 11 1/3, 8 2/3, and 6
Mev, respectively. The lower bounds of the angular zones j =1, 2, ...,
9, 10 are defined to be cos 7 = .9, .8, ... , .1, O in that order. In

the escape distribution tables, is the fraction of escaping neutrons

aJh
in energy group h and angular zone J, while eh = 255 ajh'

Tables 1, 2, 3, 4, 5 give the results for & neutron source in a
layer of thickness A\ parallel to the surface and at depths O, A, ... ,
L)X below it. Here A( = 24.596 cm) is the total free path for 14.1
Mev neutrons in deuterium.

Table 6 shows the escape distribution for a source uniformly dis-
tributed in a layer extending from the surface to a depth of 5 A . The

escape distribution for this case may be regarded as essentially that for

the semi-infinite source.

14
..: .I:. : ..|. 00y l
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TABLE 1
Source Depth = 0 Width = A
S = .288050
[#:1]
L
3 1 2 3
1 JA1bsh7 .014998 014476 .013720
2 099546 .01Lk19 .013964 .015218
3 093745 .015745 012824 .014920
I .093413 016275 .015010 .014196
5 .07k232 .016488 013711 .011353
6 .065553 016462 010451 .010048
T .060824 .013769 .009590 .007T2h
8 .040081 .011009 .007194 005771
9 .025573 .005232 .003037 .003463
10 .008086 .001534 .001183 .000616
e 675600 .125931 101440 .097029
15
. .:'
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TABLE 2
Source Depth = A Width = A
S = .103708
2]
2 L

3 . 3

1 099428 .048919 044051 LOL6T24
2 .089995 .048995 LO4134T .036991
3 .065086 .0L2Th3 .032848 .032317
4 .054916 .031002 .027818 .027363

5 .043873 .025339 .018724 .018825
6 .024946 .013683 .015214 .012100
T 007994 007725 .009235 .008087
8 .002893 .004438 .005221 005442
9 .000163 .000727 .001482 .001630
10 .000000 000447 .000968 .000301
e, .389294 .22L018 .196908 .189780
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TABLE 3
Source Depth = 2\ Width = A
S = .040575
[#:n]
3 1 2 3 L
1 .100214 071224 .061659 .062459
2 066743 064204 .059892 .0k7582
3 .054936 .034003 .036815 .039269
I .030291 .036081 .031980 026172
5 .021148 .031112 .018999 .020874
6 .010058 .009583 .014583 .013024
7 .002465 .006104 .006192 .005910
8 0] .002123 .00k4235 .004833
9 0 .000872 .000893 .002163
10 0 .000439 .000716 .000150
e, .285855 255745 .235964 222436
17
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. TABLE &4
Source Depth = 3 A Width = A
S = ,016337
[*30]
L
3 1 2 3

1 .090532 .100203 .088870 .064570
2 .055088 .072234 .069825 052711
3 .050746 .048436 .041034 .048913
N .010960 .036078 .030550 .031220
5 o] .014599 .020039 .015206
6 .003060 .005324 .006176 .011666
T 0 .002769 .00T7408 .008189
8 0 0 .005588 .005027
9 0 0 0 .002152
10 0 o} 0 .000821
ey .210386 279643 .269490 .2LoL81

18
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TABLE 5
Source Depth = 4 X Width = A
S = .006867
[230]
. 2 4
J 1 3
1 .109216 .087511 .102160 .098415
2 .058248 .0kolsT 075649 .05595T7
3 .050967 .037510 042473 .059885
N 0 . 045513 017127 .018776
5 0 .011015 .019401 .020552
6 0 .014009 .005867 .004257
T 0 .0040k49 .00870k4 .007386
8 0 0 0 .003926
9 o] o] 0 .000758
10 0 0 0 .000212
e, .218431 240064 .271381 270124
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TABLE 6
Source Depth = O Width = 5A
[250]
5 1 2 3 4

1 .108887 .031877 .029401 .028675
2 .092233 .029191 .027222 .025016
3 081577 .025018 .020978 .022946
L .OTU661 .022543 .020027 .018940
5 .058811 .019655 .015636 .014179
é .0k8134 .014780 .011681 .010751
7 .0L0500 .011169 .009115 .007657
8 026003 .008161 .006315 .005558
9 .016208 .003552 .002337 .002842
10 .005115 .001111 001033 .000505
e, .552129 .167057 143745 .137069

R
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It may be of interest to note the effect of the inelastic scatter-
ing upon the escape distribution. The following Table 7 shows the escape
distribution which obtains for the essentially infinite medium under the

assumption E‘i(v) = 0, as compared with Table 6.

TABLE 7
o)
3 1 2 3 4
1 116670 .036243 .030673 .020804
2 .090508 .031691 .027612 .018231
3 .073196 .030968 .024158 .017628
I 074131 .026365 .021749 .014373
5 .061407 .021450 .016211 .011409
6 044183 .018015 .012835 .009053
7 .0b1h52 .014823 .008664 .005205
8 027272 .010203 .006828 .004753
9 .013928 .005565 .002911 .002310
10 .003770 .001219 .001219 .000315
e 546517 .196542 .152860 .104081
21
o 0: 0.: [ : 0: ® : 0 o
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5. Elementary Properties of Inelastic Collision

The preliminary statements made in Section 3 may be derived in a
very elementary way from energy and momentum considerations.
Consider particles of mass m. , velocities Vi, total mass m = Zmi,

center of mass velocity V and total momentum P defined by mV =) m, V; = P,

relative velocities Vi' v, -V (whence Zmivi' = 0), and kinetic energy

kK = %’-mi V12 ( = Z_%mi vi'2 +% ve).

Let 1 = 1, 2, and assume a momentum-conserving collision resulting
in fragmentation of m, with conversion of its binding energy b into mass.
Let the particles resulting from the collision have masses n 3’ total mass

n= Zn j (ignoring mass increase), velocities W 3 center of mass velocity

W, and momentum Q, where mW g Z n, W 3 = Q, relative velocities
J

WJ' = wJ - W, and kinetic energy A - Z%nj wja ( = %nj WJ'a + %— mwz).
We postulate the conservation equations
(a) P=¢
(b) k=b+ L
Conservation of momentum {a) implies V = W, and (b) therefore reads
k=D + % mV2 + Z_ —3?3 nJ wj'z. For such a reaction it is therefore neces-
sary that k - % m° 2 b. In the special case V, = 0, mV = mV,,
:}2- V2 = (ml/m)k, and this necessary condition becomes k = (m/mz)b, or
k Z —g— b for & neutron impinging on deuterium. This serves to explain the

fact that '5'1 drops to zero at 3.342 Mev (cf. Section 1).

o UNCLASSIF/E@
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In the limiting case, k - 3 mV2 b, the resulting relative energy
2
Z'§ n‘j wj = 0 and all wj = V necessarily. Conversely, wj =V,

J=1, 2, ... is a solution of the equations (a), (b) in this case.

Consider the case k - % mV2 > b, and let J denote any one of the re-

sulting particles j, 2. signifying summation over all j # J. Define

|
n' = Z n 3 and let WR be the velocity of the center of mass of the resid-

' 1 '
ual set R, i.e., n'wR = Z nJWJ. Then O =anw‘j = anJ + Z nJ(wJ-w)

W +n'(W, - W), and
=aW +n'(W - W), an

' 1.1
(c) n Mo+ nW =0

where WI; is the velocity of the center of mass of R relative to that of

the whole system. Now define W .j" =W 5" Wp = wj - WR' for j # J. From
] "
these equations and (c¢) it follows that Z_ n, W =0 and k - -é— mV2 - b

JJ
! ne
(m/n )<§ J J>+Z%n,jwj .

This indicates that the maximal relative energy for the Jth particle

2
is (n'/m)(k - %— mV2 - b). If ]2' nJWJ equals this maximum, we necessarily
have for all j # J the equations WJ = 0 and wJ =V - (nJ/n')wJ'. Con-
2
versely, if WJ is & vector of arbitrary direction with 2 J I
= (a'/m)(k - % mV - b), then the definitions WysV+ WJ and

WJ =V - (nJ/n')wJ' for j # J provide a solution of the equations (a),

(b) and the gt particle attains the maximal relative energy.

UN CLAbb’/f//;‘g
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More generally, if e is any energy on the range

2

0£e % (n'/m)k - % mV< - b), there exists a solution of the system

(2), (b) which assigns to the g particle the relative energy e. For,
1 l |2 "
let W, be any vector such that 3 n . =e, teke wJ (5 # J) to be any

solution of the system

]
"2
2z -]2‘—an3 =k -%mve - b - (m/n')e

1
)2 njwj" =0

|
and define W_. = V + W_ , and W

3 7 for j # J.

' <
LA

and the range of velocities WJ is there-

=V - (nJ/n')wJ' W,

J J

Because of the range of relative energy e we have O &

]1/2

1 .2
- ¢ - - -
= [(2!1 /an)(k 5wV b)
fore the closed sphere of radius /°J indicated in Fig. 3.
Three ceses arise, depending on the incident kinetic energy.
Case 1.  p; <[V|. No velocities Wj can result for which
ql g > arc sin /DJ/ IVI . For a given (PJ less than this bound, the range

of possible speeds |w is bounded from zero.

Jl
Case 2. fr= ‘V | The range of possible ({)J is 0 £ (PJ T -

For such lPJ, the range of Ile extends from zero to its upper bound.
Case 3. /°J>|Vl . In this case, 4,,] has range 0 & (yJ £ T, and

for a given tPJ, lel ranges from O to its upper bound.

In all cases, the maximum speed w 5= max lel associated with a pos-
. . . 2 2
sible l}/J is given by the greater root of the quadratic PJ =WV
2 1 2

X X - 1
2wJ ]Vlcos (//J. Substituting for /’J, and writing e for 3 BWy = max 'g'anJ

+V2-

2k
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Fig. 3 The range of resultunt velocities.
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associated with ﬂ/J, we have

2(an)l/2 1/2 1/2

1 2 m 1
— ' e; (-émv) cos l#J-——'-(eJ+§mv2)-k+b
n n

From the definition of fJ it follows that fJ % IVI according as

k - (m/n") (% mV2) S b, and, in the case V, = 0, according as

(n' - ml)k/n' E b. Moreover, in case V2 = 0, the above equation takes

the simpler form

1/2 '
2(m n.) (n° - m )k
mlnf eJ1/2 kl/.2 cos WJ o S (" -m
n

o]
o]

Specifically, in the case of a deuteron shattering the deuterium
nucleus, cases 1, 2, and 3 obtain according as k is less than, equal to,

or greater than, 2b, respectively, and the maximal energy e. for direc-

J
tion lﬂ], is given by the equation

1/2 (1/2 _3 1
eJ k cosqlJ—geJ-gk-i-b
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